Table 3. Values of $M-\mathrm{O}$ distances (\AA) in some metalloporphyrin complexes

Complex	M-O	References
$\mathrm{Os}^{\mathrm{v1}}(\mathrm{O})_{2}(\mathrm{oep})$	1.745 (5)	This work
$\mathrm{Os}^{\mathrm{V1}}(\mathrm{O})_{2}$ (ttp)	1.743 (3)	Che, Chung \& Lai (1988)
$\mathrm{Mo}^{\text {v/ }}(\mathrm{O})(\mathrm{ttp})$	1.656 (6)	Diebold, Chevrier \& Weiss (1979)
$\mathrm{Mo}^{\mathbf{v}}(\mathrm{Cl})(\mathrm{O})(\mathrm{tpp})^{\text {a }}$	1.714 (3)	Ledon \& Mentzen (1978)
$\left[\mathrm{Mo}^{\mathrm{V}}(\mathrm{O})(\mathrm{tpp})\right]_{2} \mathrm{O}$	1.707 (3)	Johnson \& Scheidt (1977)
$\mathrm{Ti}^{\text {iv }}$ (O)(oepMe2) ${ }^{\text {b }}$	1.619 (4)	Dwyer, Puppe, Buchler \& Scheidt (1975)
$\mathrm{Ti}^{\mathrm{IV}}(\mathrm{O})(\mathrm{oep})$	1.613 (5)	Guilard, Latour, Lecomte, Marchon, Protas \& Ripoll (1978)
$\mathrm{Cr}^{\text {IV }}(\mathrm{O})(\mathrm{ttp})$	1.572 (6)	Groves, Kruper, Haushalter \& Butler (1982)
$\mathrm{Cr}^{\text {rv }}$ (O)(tpp)	1.62 (2)	Budge, Gatehouse, Nesbit \& West (1981)
$\mathrm{V}^{\mathrm{lv}}(\mathrm{O})(\mathrm{oep})$	1.620 (2)	Molinaro \& Ibers (1976)
$\mathrm{V}^{\mathrm{IV}}(\mathrm{O})(\mathrm{ttp})$	1.625 (16)	Drew, Mitchell \& Scott (1984)
$\mathrm{V}^{\text {lv }}(\mathrm{O})(\mathrm{etp})^{\text {c }}$	1.599 (6)	Drew, Mitchell \& Scott (1984)
$\mathrm{V}^{\text {1v }}(\mathrm{O})(\text { (dpep })^{\text {d }}$	1.582 (3)	Miller, Hambley \& Taylor (1984)
$\mathrm{Nb}^{\mathbf{V}}(\mathrm{F})(\mathrm{O})($ (oep $)$	1.749 (3)	Lecomte, Protas, Richard, Barbe \& Guilard (1982)

(a) oepMe2 $=\alpha, \gamma$-dimethyl- α, γ-dihydrooctaethylporphyrin; (b) tpp = tetraphenylporphyrin; (c) etp = etioporphyrin; (d) dpep = deoxophylloerythroetioporphyrin.
phyrin. In Table 3 are reported the $M-\mathrm{O}$ distances for several metalloporphyrin complexes; fivecoordinate complexes have $M-\mathrm{O} \simeq 1.6 \AA$ and sixcoordinate species have $M-\mathrm{O} \simeq 1.7 \AA$.

Support of this work by the National Institutes of Health (GM-38401) is gratefully acknowledged.

References

Blessing, R. H. (1987). Crystallog. Rev. 1, 3-58.
Buchler, J. W. \& Smith, P. D. (1974). Angew. Chem. Int. Ed. Engl. 13, 341.

Budge, J. R., Gatehouse, B. M. K., Nesbit, M. C. \& West, B. O. (1981). J. Chem. Soc. Chem. Commun. pp. 370-371.

Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). OrfFE. Report ORNL-TM-306. Oak Ridge National Laboratory, Tennessee, USA.
Che, C.-M., Chung, W.-C. \& Lai, T.-F. (1988). Inorg. Chem. 27, 2801-2804.
Che, C.-M., Poon, C.-K., Chung, W.-C. \& Gray, H. B. (1985). Inorg. Chem. 24, 1277-1278.
Diebold, T., Chevrier, B. \& Weiss, R. (1979). Inorg. Chem. 18, 1193-1200.
Drew, M. G. B., Mitchell, P. C. H. \& Scott, C. E. (1984). Inorg. Chim. Acta, 82, 63-68.
Dwyer, P. N., Puppe, L., Buchler, J. W. \& Scheidt, W. R. (1975). Inorg. Chem. 14, 1782-1785.

Groves, J. T., Kruper, W. J. Jr, Haushalter, R. C. \& Butler, W. M. (1982). Inorg. Chem. 21, 1363-1368.

Gullard, R., Latour, J.-M., Lecomte, C., Marchon, J.-C., Protas, J. \& Ripoll, D. (1978). Inorg. Chem. 17, 1228-1237.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Johnson, J. F. \& Scheidt, W. R. (1977). J. Am. Chem. Soc. 99, 294-295.
Lapp, R. L. \& Jacobson, R. A. (1979). ALLS. A Generalized Crystallographic Least Squares Program. National Technal Information Services IS-4708 UC-4, Springfield, Virginia, USA.
Lecomte, C., Protas, J., Richard, P., Barbe, J. M. \& Guilard, R. (1982). J. Chem. Soc. Dalton Trans. pp. 247-250.

Ledon, H. \& Mentzen, B. (1978). Inorg. Chim. Acta, 31, L393.
Main, P., Hull, S. E., Lessinger, L., Germain, G. Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Miller, S. A., Hambley, T. W. \& Taylor, J. C. (1984). Aust. J. Chem. 37, 761-766.
Molinaro, S. \& Ibers, J. A. (1976). Inorg. Chem. 15, 2278-2283.

Acta Cryst. (1990). C46, 1098-1100

Structure of catena-Poly[bis(ethylenediamine)zinc(II)- μ-cyano-dicyanonickel(II)-μ-cyano]

By Juraj Černák, Ivan Potoč̌̌áá and Jozef Chomič
Department of Inorganic Chemistry, P. J. Safárik University, Moyzesova 11, 04154 Košice, Czechoslovakia
and Michal Dunaj-Jurčo
Department of Inorganic Chemistry, Slovak Technical University, Radlinského 9, 81237 Bratislava, Czechoslovakia

(Received 17 July 1989; accepted 8 January 1990)

Abstract

NiZn}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}(\mathrm{CN})_{4}\right], \quad M_{r}=348 \cdot 35\), monoclinic, $P 2_{1} / n, a=7 \cdot 173$ (3), $b=10 \cdot 606$ (4), $c=$ 10.091 (6) $\AA, \beta=115.91$ (4) ${ }^{\circ}, V=690.53$ (6) $\AA^{3}, Z=$ $2, D_{m}=1.66(1), D_{x}=1.675 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=356$, $\lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \mu=3.1 \mathrm{~mm}^{-1}, T=295 \mathrm{~K}$,

0108-2701/90/061098-03\$03.00

$R=0.058$ for 1048 reflexions. The structure is built up of infinite electroneutral $\left[-\mathrm{Zn}(\mathrm{en})_{2}-\mathrm{NC}-\right.$ $\left.\mathrm{Ni}(\mathrm{CN})_{2}-\mathrm{CN}-\right]_{\infty}$ chains parallel to the c axis (en $=\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$). The chains are significantly bent at the $\mathrm{N}(1)$ atom, the angle $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Zn}$ © 1990 International Union of Crystallography
being $148.0(7)^{\circ}$. The Ni atom is square-planar coordinated by four cyano groups. The Zn atom is coordinated in the form of an elongated tetragonal bipyramid. Two chelate ethylenediamine molecules are bonded in the equatorial plane. The axial positions are occupied by N atoms from bridged cyano groups. The C atoms in the ethylenediamine ligand are disordered in two positions.

Experimental. Preliminary Weissenberg photographs reveal space group $P 2_{1} / n$ and isostructurality with $\mathrm{Ni}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}$ (Cernák, Chomič, Baloghová \& Dunaj-Jurčo, 1988) and $\mathrm{Ni}(\mathrm{en})_{2} \mathrm{Pd}(\mathrm{CN})_{4}$ (Rüegg \& Ludi, 1971). D_{m} by flotation in mixture of bromoform and chloroform. Crystal: yellow parallelepided $0.6 \times 0.4 \times 0.3 \mathrm{~mm}$. Data collection: Syntex $P 2_{1}$ diffractometer, graphite-monochromated Mo $K \alpha$ radiation ($\theta-2 \theta$ scan technique, $2 \theta_{\text {max }}=$ 60°). Unit-cell parameters from 15 reflections with 3° $\leq \theta \leq 13^{\circ} .2$ standard reflections measured every 100 reflections. Variation 4\%. 2014 unique reflections (0 $\leq h \leq 10,0 \leq k \leq 14,-12 \leq l \leq 12$); of these, 1048 had $F_{o} \geq 4 \sigma\left(F_{o}\right)$. Lp corrections using the program XP21 (Pavelčík, 1986), absorption corrections after the isotropic model following the method of Walker \& Stuart (1983) with the program ABSORB (Ugozzoli, 1987). As an initial model the atomic positions from $\mathrm{Ni}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}$ (Černák et al. 1988) were taken. The structure was subjected to anisotropic full-matrix least-squares refinement except for disordered C atoms which where treated isotropically. The function minimized was $\sum w\left(F_{o}-\left|F_{c}\right|\right)^{2}$. H atoms included in the model in calculated positions. The final R value was 0.0584 , with $w R=0.0583$, unit weights; 83 parameters varied in the last cycle; $S=$ $1 \cdot 74 ;(\Delta / \sigma)_{\text {max }}=0.049$, max. $\Delta \rho \pm 0.75$ e \AA^{-3} near the heavy atoms. Final atomic coordinates are given in Table 1. Bond lengths and angles are given in Table 2.*

Calculations were performed with SHELX76 (Sheldrick, 1976). Geometrical analysis using PARST (Nardelli, 1983). Atomic scattering factors were those in SHELX76. A projection of the structure down the x axis is shown in Fig. 1.

Related literature. The crystal structures and properties of $\mathrm{Zn}(\mathrm{en})_{3} \mathrm{Ni}(\mathrm{CN})_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Zn}(\mathrm{en})_{3} \mathrm{Ni}(\mathrm{CN})_{4}$ complexes are described in Černák, Chomič, DunajJurčo \& Kappenstein (1984). The preparation of the title compound from solution as well as by thermal decomposition of tris(en) complexes is described in

[^0]Table 1. Fractional coordinates $\left(\times 10^{4}\right)$ and equivalent or isotropic thermal parameters $\left(\times 10^{2} \AA^{2}\right)$ of non -H atoms with e.s.d.'s in parentheses
K (the site occupation factor) is given when it is different from unity. $U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.

	x	y	z	$U / U_{\text {eq }}$	K
Zn	0	0	5000	$2 \cdot 45$ (5)	
Ni	0	0	0	2.53 (5)	
$\mathrm{N}(1)$	- 1012 (11)	394 (7)	2564 (7)	3.6 (2)	
N(2)	4028 (12)	-1028 (8)	2264 (9)	5.6 (4)	
N(3)	1168 (10)	1850 (6)	5478 (7)	3.6 (3)	
$\mathrm{N}(4)$	-2733 (10)	882 (6)	4876 (7)	3.1 (2)	
$\mathrm{C}(1)$	-700 (11)	272 (6)	1550 (7)	2.5 (2)	
$\mathrm{C}(2)$	2540 (12)	-647 (8)	1388 (7)	3.2 (3)	
C(3)	-308 (22)	2573 (15)	5909 (17)	4.4 (3)	0.63 (4)
C(31)	-533 (42)	2775 (26)	5170 (29)	5.0 (3)	$0 \cdot 37$ (4)
C(4)	-2494 (21)	2209 (15)	4742 (16)	4.0 (3)	0.63 (4)
C(41)	-2059 (39)	2225 (25)	5524 (29)	$4 \cdot 1$ (5)	$0 \cdot 37$ (4)

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Zn}-\mathrm{N}(1)$	2.277 (7)	$\mathrm{C}(31)-\mathrm{C}(41) \quad 1.4$	1.42 (5)
$\mathrm{Zn}-\mathrm{N}(3)$	$2 \cdot 105$ (6)	$\mathrm{C}(41)-\mathrm{N}(4) \quad 1.5$	1.55 (3)
$\mathrm{Zn}-\mathrm{N}(4)$	$2 \cdot 126$ (8)		
$\mathrm{N}(3)-\mathrm{C}(3)$	1.52 (2)	$\mathrm{Ni}-\mathrm{C}(1) \quad 1.86$	1.862 (9)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.54 (2)	$\mathrm{Ni}-\mathrm{C}(2) \quad 1.8$	1.877 (7)
$\mathrm{C}(4)-\mathrm{N}(4)$	1.43 (2)		1.146 (12)
		$\mathrm{N}(1)-\mathrm{C}(1) \quad 1.1$	
$\mathrm{N}(3)-\mathrm{C}(31)$	1.49 (3)	$\mathrm{N}(2)-\mathrm{C}(2) \quad 1 \cdot 1$	(10)
$\mathrm{N}(1)-\mathrm{Zn}-\mathrm{N}(3)$	89.1 (3)	$\mathrm{N}(3)-\mathrm{C}(31)-\mathrm{C}(41)$	109 (2)
$\mathrm{N}(1)-\mathrm{Zn}-\mathrm{N}(4)$	$90 \cdot 3$ (3)	$\mathrm{C}(31)-\mathrm{C}(41)-\mathrm{N}(4)$	114 (2)
$\mathrm{N}(3)-\mathrm{Zn}-\mathrm{N}(4)$	$82 \cdot 4$ (3)	$\mathrm{C}(41)-\mathrm{N}(4)-\mathrm{Zn}$	106 (1)
$\mathrm{Zn}-\mathrm{N}(3)-\mathrm{C}(3)$	$106 \cdot 2$ (7)	$\mathrm{C}(1)-\mathrm{Ni}-\mathrm{C}(2)$	87.7 (3)
$\mathrm{N}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	105 (1)		
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(4)$	107 (1)		
$\mathrm{C}(4)-\mathrm{N}(4)-\mathrm{Zn}$	107.0 (8)	$\mathrm{Zn}-\mathrm{N}(1)-\mathrm{C}(1)$	148.0 (7)
$\mathrm{Zn}-\mathrm{N}(3)-\mathrm{C}(31)$	111 (1)	$\mathrm{Ni}-\mathrm{C}(1)-\mathrm{N}(1)$	$175 \cdot 3$ (7)
		$\mathrm{Ni}-\mathrm{C}(2)-\mathrm{N}(2)$	$176 \cdot 9$ (8)

Fig. 1. Projection of the structure of $\mathrm{Zn}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}$ down the x axis with the atomic numbering scheme.

Černák, Chomič, Potočňák \& Dunaj-Jurčo 1989). Structures of the general formula $M(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}$ have been described by Dunaj-Jurčo, Garaj, Chomič, Haluška \& Valach (1976) ($M=\mathrm{Cu}$), Jameson, Bachmann, Oswald \& Dubler (1981) $(M=C d)$ and Černák et al. $(1988)(M=\mathrm{Ni})$.

We thank the Computer Centre of the Technical University of Košice for the use of the EC 1045 computer.

References

Černák, J., Chomič, J., Baloghová, D. \& Dunaj-Jurčo, M. (1988). Acta Cryst. C44, 1902-1905.

Černák, J., Chomič, J., Dunaj-Jurčo, M. \& Kappenstein, C. (1984). Inorg. Chim. Acta, 85, 219-226.

Černák, J., Сhomič, J., Роtočñák, I. \& Dunaj-JurCo, M. (1989). Proc. 12th Conf. Coord. Chem., Smolenice, pp. 73-78.

Dunaj-Jurčo, M., Garaj, J., Chomič, J., Haluška, V. \& Valach, F. (1976). Proc. 6th Conf. Coord. Chem., Smolenice, pp. 45-51. Chem Abstr. 90, 64844U.
Jameson, G. B., Bachmann, W., Oswald, H. R. \& Dubler, E. (1981). Acta Cryst. A37, C88-C89.

Nardelli, N. (1983). Comput. Chem. 7, 95-98.
Paveľík, F. (1986). Program XP21. Comenius Univ., Pharmaceutical Faculty, Bratislava, Czechoslovakia.
Rüegg, M. \& Ludi, A. (1971). Theor. Chim. Acta, 20, 193-202.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Ugozzoli, F. (1987). Comput. Chem. 11, 109-120.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1990). C46, 1100-1101

Structure of catena-Tris(μ-diethyldithiophosphinato)- μ-iodo-dimercury(II), $\left.\mathbf{H g}_{2} \mathbf{I S S}_{\mathbf{2}} \mathbf{P}\left(\mathrm{C}_{2} \mathbf{H}_{5}\right)_{2}\right]_{3}$

By Göran Svensson
Inorganic Chemistry 2, Chemical Center, University of Lund, PO Box 124, S-221 00 Lund, Sweden

(Received 11 October 1989; accepted 18 December 1989)

Abstract

Hg}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{PS}_{2}\right)_{3}\right], M_{r}=987 \cdot 80\), monoclinic, $P 2_{1} / c, \quad a=17.865(5), \quad b=10 \cdot 371(1), \quad c=$ 15.559 (4) $\AA, \beta=104.44$ (3) ${ }^{\circ}, V=2791$ (1) $\AA^{3}, Z=$ $4, D_{x}=2.350(1), D_{m}=2.36 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=$ $0.71069 \AA, \quad \mu=127.6 \mathrm{~cm}^{-1}, \quad F(000)=1824, \quad T=$ $293 \mathrm{~K}, R=0.040$ for 3367 reflections with $I>3 \sigma(I)$. The crystal is built up from infinite two-dimensional networks. One of the two unique Hg atoms coordinates three \mathbf{S} and one I atom in a tetrahedron, while the other Hg also coordinates three S and one I atom but has an almost planar coordination to the three S atoms; the distances from Hg to the planes defined by the three S atoms are 0.9923 (6) and 0.1847 (6) \AA, respectively. The diethyldithiophosphinato ligands act as bridges between the Hg atoms.

Experimental. $\mathrm{Hg}_{2} \mathrm{I}\left[\mathrm{S}_{2} \mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]_{3}$ was prepared by dissolving HgI_{2} in aqueous NaI solution and then adding an aqueous solution of $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{PS}_{2} \mathrm{Na} .2 \mathrm{H}_{2} \mathrm{O}$. Transparent single crystals were grown from dioxane by slow evaporation at room temperature. Dimensions of crystal examined were $0.12 \times 0.14 \times$ $0.18 \mathrm{~mm} . D_{m}$ was measured by flotation in a $\mathrm{CHCl}_{3} /$ CHBr_{3} mixture. Huber four-circle X-ray diffractometer (Svensson, 1987) using graphite-monochromated Mo $K \alpha$ radiation ($\lambda=0.71069 \AA$). Cell constants were determined by least-squares method from setting angles of 18 reflections in the range $10<\theta<$ $17^{\circ} .5412$ reflection intensities were measured with the $\omega / 2 \theta$ technique, $\Delta \omega=(0.7+0.6 \tan \theta)^{\circ}$, scan
speed $0.5^{\circ} \mathrm{min}^{-1}$. If $3.0<I / \sigma(I)<50.0$, a second scan was performed with a scan speed of $0.2^{\circ} \mathrm{min}^{-1}$. Three standard reflections, measured every third hour, decreased by approximately 6% during the data collection; a correction for this decay was made. Data were corrected for Lorentz, polarization and absorption effects. Absorption correction by numerical integration of crystal defined by six faces $\{100\}$, $(0 \overline{1}),(01 \overline{1})$, ($1 \overline{1} 1$) and (111), grid $12 \times 12 \times 12$, transmission factor $0 \cdot 10-0 \cdot 31$. 4932 unique reflections $\left(R_{\text {int }}=0.035\right), 3367$ with $I>3 \sigma_{c}(I)$ used in refinement (σ_{c} based on counting statistics). Index range $h-18 \rightarrow 17, \quad k-12 \rightarrow 0$ and $l-20 \rightarrow 0$, $(\sin \theta) / \lambda<0.60 \AA^{-1}$. Structure solved by Patterson methods and subsequent electron-density difference maps. Methylene H atoms placed in calculated positions ($\mathrm{C}-\mathrm{H}=1.0 \AA, U_{\text {iso }}=0.08 \AA^{2}$). Non-H atoms refined with anisotropic displacement parameters. Least-squares refinement, function minimized $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}, \quad w=\left[\sigma^{2}\left(\left|F_{o}\right|\right)+\left(c_{1}\left|F_{o}\right|\right)^{2}+c_{2}\right]^{-1}$ with $c_{1}=0.017$ and $c_{2}=7$ adjusted to give constant $\left\langle w(\delta F)^{2}\right\rangle$ in different $\left|F_{o}\right|$ and $\sin \theta$ intervals, final R $=0.040, w R=0.049, S=1.34,(\Delta / \sigma)_{\max }=0.20$, correction for secondary extinction, $g=2.7(1) \times 10^{3}$ [type I, Lorentzian mosaicism (Becker \& Coppens, 1974) $], \quad \Delta \rho_{\max } / \Delta \rho_{\min }=1 \cdot 14 /-1 \cdot 10$ e $\AA^{-3}, \quad 218 \mathrm{pa}-$ rameters.

Data and final model were compared by probability plotting (Abrahams \& Keve, 1971) of ordered values of $\delta R_{i}=\Delta F_{i} / \sigma\left(\left|F_{o}\right|_{i}\right)$ vs those expected for © 1990 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52587 (10 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

